Cardiac kinases play a critical role in the development of heart failure, and represent potential tractable therapeutic targets. However, only a very small fraction of the cardiac kinome has been investigated. To identify novel cardiac kinases involved in heart failure, we employed an integrated transcriptomics and bioinformatics analysis and identified Homeodomain-Interacting Protein Kinase 2 (HIPK2) as a novel candidate kinase. The role of HIPK2 in cardiac biology is unknown. We used the Expression2Kinase algorithm for the screening of kinase targets. To determine the role of HIPK2 in the heart, we generated cardiomyocyte-specific HIPK2 knockout (CM-KO) and heterozygous (CM-Het) mice. Heart function was examined by echocardiography and related cellular and molecular mechanisms were examined. Adeno-associated virus serotype 9 (AAV9) carrying cardiac-specific constitutively active MEK1 (TnT-MEK1-CA) were administrated to rescue cardiac dysfunction in CM-KOs. To our knowledge, this is the first study to define the role of HIPK2 in cardiac biology. Using multiple HIPK2 loss-of-function mouse models, we demonstrated that reduction of HIPK2 in cardiomyocytes leads to cardiac dysfunction-suggesting a causal role in heart failure. Importantly, cardiac dysfunction in HIPK2 KOs developed with advancing age, but not during development. In addition, CM-KO and CM-Het exhibited a gene dose-response relationship of cardiomyocyte HIPK2 on heart function. HIPK2 expression in the heart was significantly reduced in human end-stage ischemic cardiomyopathy compared to non-failing myocardium, suggesting a clinical relevance of HIPK2 in cardiac biology. studies with neonatal rat ventricular cardiomyocytes corroborated the findings. Specifically, adenovirus-mediated overexpression of HIPK2 suppressed the expression of heart failure markers, and , at basal condition and abolished phenylephrine-induced pathological gene expression. An array of mechanistic studies revealed impaired ERK1/2 signaling in HIPK2 deficient hearts. rescue experiment with AAV9 TnT-MEK1-CA nearly abolished the detrimental phenotype of KOs suggesting that impaired ERK signaling mediated apoptosis as the key factor driving the detrimental phenotype in CM-KO hearts. Taken together, these findings suggest that cardiomyocyte HIPK2 is required to maintain normal cardiac function via ERK signaling.